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Abstract—We evaluate the dynamic response of a flexible rectangular thin plate to a constant
acceleration applied to its support contour. The study is carried out in application to printed circuit
boards (PCBs) used in avionic packaging and is based on a simple and easy-to-use analytical model,
clearly indicating the role of various factors affecting the mechanical behavior of the board. The
main goal of the study is to determine the maximum accelerations experienced by the board. We
showed that in the case of large deflections of a board with a nondeformable contour it is important
to account for nonlinear effects, which uare due to the membrane forces and lead to substantially
higher accelerations and stresses. The developed theory can be helpful in evaluating the accelerations
acting on surface-mounted components, and choosing the appropriate PCB type, dimensions and
support conditions. It can also be used when choosing the most feasible layout of the clectronic
devices on the board.

INTRODUCTION

Although cyclic differential thermal expansion is usually regarded as the most typical and
the most critical type of loading on clectronic equipment, mechanical, and especially
dynamic, loading can play a crucial role in the performance and reliability of electronic
components and devices [see, for instance, Steinberg (1973, 1989) ; Suhir and Lee (1989)).
Such loading can occur during mechanical handling or accidental misuse of the equipment,
as well as during its shipment (transportation). In military applications, dynamic loading
takes place even during normal operation of the clectronic equipment.

In the analysis below we evaluate the dynamic response of a flexible thin plate to a
constant acceleration, suddenly applied to its support contour, with application to printed
circuit boards (PCBs) used in avionic packaging. Shock loading of this type can occur, for
example, during launching or manocuvering of a spacecraft or a guided missile.

The main goal of our investigation is to determine the maximum accelerations experi-
enced by the electronic components and devices surface-mounted (SM) on the board. Tt is
known that elevated accelerations can affect both the mechanical integrity and the normal
functioning of the SM components. In addition, we evaluate the maximum stresses in the
PCB in order to establish whether these stresses can be high enough to cause any serious
damage to the board structure.

In our study we consider the fact that the PCB's support contour is typically non-
deformable. This leads to reactive membrane (in-plane) stresses which are proportional to
the deflections squared [see, for instance, Timoshenko and Woinowski-Krieger (1969)].
Limiting our analysis to the principal mode of vibrations, we obtain an exact solution to
the nonlinear problem in question. Clearly, such a solution can be applied with confidence
even in the case of significant external accelerations and very large elastic deflections. Linear
theory, which considers bending only, always overestimates the bending stresses, as well as
the dynamic deflections (amplitudes). When these deflections are small, and the vibration
frequency can be assumed deflection independent, the linear approach conservatively and
quite accurately predicts the induced accelerations and stresses. However, when the deflec-
tions are significant, the linear approach may not be conservative. As far as the stresses are
concerned, this is due to the membrane forces which are ignored by the linear theory. In
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the case of the maximum accelerations, this is due to the fact that the nonlinear frequency
can be substantially larger than the frequency of linear vibrations, and the induced accel-
erations are approximately proportional to the frequency of vibrations squared.

In this investigation, we treat a PCB as a thin and flexible rectangular plate. Note that
various linear and nonlinear problems of the dynamics of plate structures were analyzed
and discussed in great detail in numerous monographs, manuals and reference books.
Examples are: Timoshenko and Young (1955), Den-Hartog (1956) and Harris and Crede
(1976). Approximate analyses of nonlinear oscillators with stiff cubic characteristics (so-
called Duffing oscillators) can be found, for instance, in the books by Kauderer (1958) and
Hayashi (1964). It should be pointed out. however, that the emphasis is made in these
books and manuals on periodic excitations and weak nonlinearities. Solutions to static
problems of nonlinear bending of plates were presented by Bubnov (1912). Prescott (1924),
Levy (1942) and Timoshenko and Woinowski-Krieger (1969). Linear modal analyses and
dynamic response predictions of PCBs and SM components, subjected to continuous
vibrations, have been carried out recently by Lau and Keely (1989), Crovetto ez al. (1990),
Keltie and Ozisik (1990). Kim and Gupta (1990) and Wong et al. (1990). Structural analysis
of circuit board (card) systems subjected to bending was performed by Engel (1990).

ANALYSIS

Stress function

The membrane stresses 6, o0 (normal) and t?, (shearing) in a PCB arc expressed
through the stress function ¢ as follows [sec, for instance, Timoshenko and Woinowski-
Kricger (1969)]:

- 02‘?‘ a:) = 0:“?‘ t(\)r - _ 01(1’7 . (1)
oy- Yadxt Ox Oy
This function must satisfy the continuity equation
Vip = — EL(w,w), (2)

where w = w(x, y, ) is the deflection’ function, £ is Young's modulus of the material, and
the operators V* (biharmonic operator) and L are:

. a-l 04 04 02 62 (:\2 2
\Y =Wj+2—‘—r‘——a+"—z. L=ss5—-|7—%].
0. dx*dys  dy ax* ¢y’ ox dy

In the casc of a PCB with a nondeformable contour, the stress function ¢ must also satisfy

the conditions
1 [« . . L (aw>2
—ve,)dx = — ) d:
EJ:, (0. —vo,)dx J; e dx

l b2 o 0 l b2 ((?W'>:
E.[) (a7 —va])dy _ij; 5 d;

where v is Poisson’s ratio of the PCB material, and a and b are the PCB dimensions in the

)
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Fig. 1. Flexible thin plate (printed circuit board) under the action of constant acceleration applied
to its support contour.

x and » directions, respectively (Fig. 1). Conditions (3) simply state that the in-plane
displacements due to the membrane stresses must be equal to the in-plane displacements
due to bending. Note that although the elastic constants of a PCB are, generally speaking,
somewhat different in the directions x and y, in this study we do not account for this
difference, i.e. assume that the PCB material is isotropic. In addition, we assume that this
material has the same properties in all its points, i.e. homogeneous.

Limiting our analysis to the first mode of vibrations, we seek the functions w and ¢ in
the form:

w=w()=w, (e (). ¢ =P (x.y)z3), )

where w.(¢) is the displacement of the support contour, w,(x, y) is the coordinate function

of the first mode of vibrations, z(¢) is the corresponding principal coordinate, and ¢,(x. )
is the static stress function.

The coordinate function w, of a simply-supported board with a finite aspect ratio b/a

between | and 2 can be presented, when the membrane stresses are sought, in the form
{Prescott, 1924):

nx ny
W, = COS — COS -, (5)
a b

After substituting (4), with consideration of (5), into the continuity eqn (2) and the non-
deformability conditions (3), we find that the function ¢, must satisfy the equation

n'E 2nx 2ny
4 o —————— rrr—— ———
Vig, = Sa7h? (cos p +cos 5 )

and the conditions
1 J‘u/! <62¢' az¢l) b L (a!¢' 62¢|> b
— - — V=5 d."=—, - - -V 3 dy=——.
E )y oy’ ox* 32a° E Ju ox* dy 32b
These result in the following expression for the static stress function:
E | 2r® v 1y, 1 vY,] & nx b my
¢|—§-§{l—_?|:<;—2+5—z)x +<?+F))]—?COSF—;§COS°F}. (6)

The coordinate function for a clamped board (plate) with an aspect ratio b/a between
1 and 1.5 can be assumed in the following approximate form (Levy, 1942):
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, Y

P (7

, X
W, = cos’ — cos® =
a

This, together with the conditions of the nondeformability of the contour, results in the
following formula for the static stress function:

P _E{ 3n’ <v+l) 2+(l+i>v2] a> nx b—zc ny
TR \E TR T\@ T ) TR T

( a )3 4y ( b )2 4ny 2a°b? 2nx 2y
~\z5) s — —\a) 5 e o

4p 4a b (a*+b7) b
a‘b’ 2nx  4ny a‘b’ dnx  2my
T @Y €os —— COS —= — @ 45D COS — CO$ T} (8)

Equation of motion
The kinetic energy T and the strain energy V of a PCB (plate), subjected to bending and
membrane forces, are expressed as follows [see, for instance, Timoshenko and Woinowski-

Krieger (1969)]:
ow\

V= gof [(Aw)z—2(l—v)L(w.tv)]dA+§%J[(A¢)2—2(l+v)L(¢,d>)] d4, (10)

where A = ab is the PCB arca, m is its mass per unit arca (with consideration of the masses
of the SM components, assuming that these masses can be uniformly “spread™ on the
PCB surface), D = En*/12(1 —v?) is the PCB's flexural rigidity (we assume that the SM
components are small and affect only the PCB mass, but not its rigidity), 4 is the board’s
thickness, and

A= 0_2_ + 0_2_
Toxt T ay?

is the Laplace operator. The first term in (10) is due to bending, and the second term is due
to the tensile membrane stresses.
After substituting (4) into formulas (9) and (10), we obtain:
= {(milA=2Mpi 2+ M3, V= iMQUA22 4 La?), (1

where the following notation is used :
M0=mJ‘ w, d4, M=mj wi dA,
A A

(12)

h

A= —A% J‘ [(Aw)? = (1 =v)L(wy, w))] d4,

/
a= ELJ[(A¢|)’—2(I+V)L(¢|.¢ ) dA

Introducing expressions (11) for the energies in the Lagrange equation [see, for instance,
Pars (1963)]:
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doT oV

vatsa=0

we obtain the following nonlinear differential equation for the unknown principal
coordinate z(?):

F4itztad =gq. (13)
Here
q = cW, (14)
is the excitation force, and
c= M, _ m 15)
M

j wldd
A

is the factor considering the effect of the coordinate function on the magnitude of the
excitation force. Equation (13) describes nonlinear forced vibrations of a one-degree-of-
frecedom system with the lincar frequency 4 and the parameter of nonlincarity a (see, for
instance, Den Hartog (1956)).

With eqns (5) and (6), formulas (12) and (15) result, in the case of a simply-supported
board, in the following expressions for the lincar vibration frequency 4, paramcter of
nonlinearity a, and the excitation force factor ¢:

|
,a +b‘\/:
A=m 1p? m

3n* D B=v)(a*+b'y+4va*h? L

=— 16
Y=L bt a‘h? (16)
c—l—6—— 1.621
n? J
For a square board (a = b) we have:
2z [D n*3—v Eh
N LR St an

In the case of a clamped board, introducing expressions (7) and (8) into formulas (12),
we obtain:

.
—_ 41!1 4 4 142 2

b= \ﬁ?s(a +bY+2037 =,

_ mEh [atebtenal)) 17 L 12 Sath'  Sa'h’ ] (-
"~ 18ma’p’ 4(1-v?) 8 g (@®+b)? " (da’+b%) 7 (a’+4b)?

=) =1778 7
c={)=1L (18)

For a square board (a = b)
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-87t2 2D n* 27—17v Eh

3oV m’ x= 49 1—-v md* (19)

For an elongated board the exact coordinate function is as follows [see, for instance,
Timoshenko and Young (1955)]:

w, =Ccoshﬂg+cosﬁg, (20)

where C = 0, f = m in the case of a simply-supported board, and C =0.1329. § =4.73 in
the case of a clamped board. This results in the formulas

7r Eh 4
== _ c=-=1273 (20
T4 l——v ma’® 7

for a simply-supported board, and in the formulas

10 /5D 11.75 Eh
A= —_— = T c=1.165 (22)
a* m 1—v ma

for a clamped board.
Maximum deflection, velocity and acceleration
The maxima of the deflection, velocity and acceleration can be determined even without

solving eqn (13). Indeed, with the constant external acceleration ., this equation can be
written as

+A2 4 azt ~2¢2) = 0,

or

If the initial displucement and velocity are zero, the constant of integration C is also zero,
and therefore

i= \/Zq:—}.z:z—- Izt (23)

This relationship (phase diagram) is plotted in Fig. 2.

Fig. 2. Phase diagram for the principal coordinate.
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The displacement = reaches its maximum value ., at the end of the first quarter-
period of vibrations, when the induced velocity ? is zero. This results in the equation:

-
2q_"' Smax — %1::\“ = 0. (24)

If the force g were applied statically, then, putting in eqn (13) ¥ = 0, we obtain the following
cubic equation for the static displacement =, :

g—Aizg—azd =0. (25)

Since the maximum induced velocity 2., also takes place when the acceleration Z is zero.
we conclude, that 2 = 2., when z = z,, so that

Smax = \/2‘1-:( ’P:;t ’a~s( (26)

The cubic eqns (24) and (25) have the following solutions

:mau = 'I:zr(t)mx' (27)
Ze = Mulas (28)
where
2y
:(,’m = 7y 29
max )»- ( )

is the maximum lincar dynamic displacement,

L0
M= = (30)

is the maximum linear static displacement, and the factors

\7 | \] / - afz0. Y

——-—;( l+\/|v+i7;l+ |~ |+2—7;). #=§(“T), &1
« = 1 2= \/ [14 — 32
n \/“ \/+\/+ + +27 (32)

consider the effect of the nonlincarity on the maximum dynamic and static displacements,
respectively. The dynamic factor

Ji+ 15127+ 1= 141727,

Kd =:m‘.u = (33)

o Ji+ S1+82Tu+ 01— 14827,

changes from K, = 2 in a linear system (u = 0) to K; = | in a strongly nonlinear system
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Fig. 3. Factors reflecting the etlect of noalincarity on the dynamic (47,) and staue (g, ) displacements,
on the induced acecleration (1,) and the dynamic factor (K, as functions of the dimensionless
parameter ool nonlincarity.

(10 — ). The factors .,y and Ky are plotted in Fig, 3. This figure indicates that dynamic
nonlincar cffects are substantially greater than the static effects.

The initial elastic (induced) acceleration can be easily obtained from egn (13) by putting
the displacement = equal to zero:

3= ¢ = oW (34)

Thus, the factor ¢, given by formula (15), is, in effect, the ratio of the maximum initial
elastic acceleration to the acceleration of the contour. The distribution of the total (absolute)
acceleration over the surface of the PCB can be obtained on the basis of the first formula
in (4) and is as follows:

W, = W= (e )E, = —[ew (xLp)— I (35)

It 1s evident from this formula that the initial acceleration w, is the maximum on the contour
(where w, = 0), and is the minimum in the center of the board (where wy = 1)

‘rll.mm = = ((. -1 )‘.".'c . (36)

In the case of a simply-supported board of finite aspect ratio, using (5), we have:

. 16 nx my .
w(v.y)= —{ -5c0s — cos - —1 .
n* a h

This formula indicates that the initial accelerations are negative within the rectangular
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The minimum acceleration in the center of the board, in accordance with (36). is
Wimn = —0.621.. In the case of a clamped board, whose coordinate function is expressed
by (7). we obtain that the initial negative accelerations occur inside the rectangular
x/a =y b= 0.3098 and that the minimum acceleration is W, n, = —0.778%. Thus, negative
tnitial accelerations occupy rather large PCB areas and their absolute maxima are quite
comparable with the magnitude of the external acceleration. This is important to have in
mind. particularly when evaluating the strength of interconnections of the devices mounted
in the inner portion of the PCB on its “front™ side, i.e. on the side of the direction of
motion. At the first moments of loading such interconnections may experience rather high
tensile stresses. These have a potential to be more dangerous than even larger compressive
stresses that will occur later. at the end of the first quarter-period of vibrations.

In elongated boards the region of negative initial accelerations is —0.212a <
X £ 0.212¢ for a simply-supported board. and —0.169a < x < 0.169« for a clamped board.
The accelerations in the center of the board are W, = —0.273%, and Wi pin = —0.2973,
respectively.

As one can see from eqns (13) and (25). the induced acceleration of the board becomes
zero when = = z,. At this moment in time all the points of the board have the same
acceleration as the support contour.

At the end of'the first quarter-period of vibrations, when the board reaches its maximum
detlection = = 2, its clastic acceleration, as follows from (13), is

= _ RN -3
~max T ‘/ = A Zimax —'a-mus .

or, considering (24),
5'"-]‘ = ;'::'“il‘ - 3‘1' (37)

From (29) and (37) we find that the induced linear acceleration is

20

S = 4, (38)

i.c. equal in magnitude and opposite in sign to the initial (lincar or nonlinear) acceleration,
expressed by formula (34). The formulas (37) and (38) indicate that the factor

s Az
S T MY o9

accounts for the effect of the nonlinearity on the maximum induced acceleration. This factor
is plotted in Fig. 3. In strongly nonlinear systems (x — o0) the factor 5., reflecting the effect
of the nonlincarity on the maximum deflection, is very small, and therefore in such an
extreme case the nonlincar induced acceleration can exceed the lincar acceleration by a
factor of 3.

Consider a new dimensionless parameter 8, which will be used hereafter, so that

Zman ), 07—
(T)”EET‘ “o

Let us show that . = 6°. Indeed. in this case eqn (39) yiclds: n, = (3—5%)/2, and formula
(40) results in the following cquation for the factor n.: | —n.—un? = 0. Since n. = 4%z,,,/2q.
this cubic equation yields: 2¢ — £°z,..— Yazh.. = 0. i.e. leads to the previously-obtained eqn
(24). The calculated values of § are shown in Fig. 3 along with the values of p. When u
changes from zero to infinity, the J value changes from 1 to \/3

o
K=5
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The absolute (total) accelerations of the board at the moment of time equal to the
quarter-period of vibrations are

Wonax = W — W (X V)20 = [T+ emamw (x 0] (4

It is evident from this formula that all the points of the board have at this moment in time
the same direction of their maximum accelerations, as the support contour. At the center
of the board they are by a factor of

ne = l+cn. (42)

larger than on the support contour. In a linear system this factor is n, = | +¢ = 2.621 for
a small aspect ratio simply-supported board. #7, = 2.273 for an elongated simply-supported
board, n, = 2.778 for a small aspect ratio clamped board. and », = 2.165 for an elongated
clamped board. In strongly nonlinear systems, with the factor of the elastic acceleration ».
approaching 3, the factor n, of the total acceleration at the center of the board reaches
1o = 5.863 in the case of a small aspect ratio simply-supported board. n, = 4.819 in the
case of an clongated simply-supported board, 5, = 6.334 in the case of a small aspect
ratio clumped board, and n, = 4.495 in the case of an ¢longated clamped board. Thus,
nonltnearity can result in a significant incrcase in the total acceleration of the PCB.
Obviously, at this moment in time the interconnections in the devices mounted on the
“front™ side of the board experience compressive stresses, while the interconnections on its
“back ™ side are subjected to tension. [t should be pointed out that because of the structural
damping the clastic vibrations fade in the course of time, and therefore at the moments of
time sufliciently remote from the moment of loading, the PCB accelerations are simply
cqual to the acceleration w; of the contour.

Solution to the equation of motion

The maxima of the PCB deflection, velocity and acceleration were determined in the
previous section on the basis of more or less elementary considerations, without solving the
cquation of motion (13). This solution can be written, using (23), in the form:;

= . TTIIITTTTIIIIIOTTIIII =, (43)

where

v do

U= F((),/\') = NI T
o J1—ksin 0

(44)

is the elliptic integral of the first kind [see, for instance, Bateman and Erdelyi (1955);
Abramowitz and Stegun (1964) ; Sneddon (1980)). & is the modulus of the elliptic function,
() = ¢n e is the amplitude of this function, and o is the frequency parameter.

In order to cxpress the parameters & and o through the parameters of the dynamic
system (13), we seck the inversion of the above integrals in the form:

_ l—cnu
TS+ I+ (S —-enu’

(435)

Here 2., is the maximum displacement, cn « is the elliptic cosine, and d is a so-far unknown
parameter. Using the rules of differentiation of the elliptic functions, we obtain:
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250 snudnu »
TP+ I+ -1y’ (36)
) - —
256 -M((H-l)(l 2k sn’ w)yenu+ (- D[1 +(1=2k%) sn? u] @

[+ D)+ (@—-1)cnu)’

where sn u is the elliptic sine, and dn u = /1 —k" sn” u is the function of delta-amplitude.
After substituting (45) and (47) into (13). we conclude that the maximum displacement =,
is expressed by eqn (24), and the parameters k and o are as follows:

_ f6=1(3-0) , [ W
k= —85———. G =4 3—_"(?. (48)
';‘2
0= \/I+ ‘;-mu = \/ - ?:m;u = 3—2": (49)

is related to the dimensionless paramcter of nonlinearity g, introduced earlier, by eqn (40).
In the linear case (x = 0), d = |, kK = 0 and o = Ai. In a strongly-nonlinear case (x — ),
o = 0,0 = \/3. k=1 2-—\/3 = 0.259, and ¢ — 0. The clliptic functions, entering the
formulas (45), (46) and (47), can be computed using recommendations and formulas
contained in Lance (1960).

All the relationships of the previous section can be determined. of course, on the
basis of the solutions of this section. Let us show, for instance, how relationship (37)
can be obtained from (45) and (47). From (45) we lind that cnu =1 when - =z,
Since in this case sn v = 0, eyn (47) yiclds: # = {da’z,... Then from (48) and (49) we have :
856 = = (2/zman) (A°2max — 3¢). This leads to (37).

The formula for the amplitude 0 of the elliptic function can be obtained from (45),
assuming cn « = cos 0. This results in the equation

where the parameter

(-
0 = arccotan [~ { =™ ~1).
erLOlln\/;( - l)

The amplitude 0 reaches its maximum value 0,,,, = n/2 when the displacement = reaches
Zmac- 1N this case the integral (44) becomes a complete elliptic integral of the first kind :

K(k)=( ) -[\/I k¥sint 0

Since the time required for the angle 0 to change form zero to 7/2 is equal to the quarter
of the period of vibrations, we conclude, on the basis of solution (43), that this period is
4K (k)/c. Therefore, the vibration frequency is

no

2K(k)’

©= (50)

In the linearcase, Ak =0, K(0)=n/2. 0 =landw =0 = A.

As follows from the obtained results, the effect of the nonlinearity on the maximum
induced (relative) displacement, velocity, acceleration and frequency can be characterized
by the following factors:
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3-0° TG =n.) J
Moo=y =N G 0 =07, = s

Stress
The stresses arising in the PCB can be computed on the basis of the following formulas
for the rectangular plates [see, for instance, Timoshenko and Woinowski-Krieger (1969)]:

, 6D ciw + &w )
=0, — 55|\ =*+V 3
' = \¢x® cv-
S g 6D _+9_> L (51)
h \Cy- cx-
6D ¢w
o =14 — 53 (1=v) 50—
h- cxcy J

where the first terms are the membrane stresses, expressed by the formulas (1), and the
sccond terms are due to bending.

With ¢qns (5) and (6) for the coordinate function and the static stress function, we
find, using (51). that the maximum normal stresses in a simply-supported board of finite
aspect ratio oceur in its center (x = v = 0) and are as follows :

LR vat 4+ b* 'I:l vat + (2 —viHh? _]

T, = oy e g g
achs L=y d(va-+h") >
. (52)
RN a4+ vh? Q2—=v)a*+vh?
ﬂ'r = L 5 ) Ty
2Wtht 1=y aat+vhy C
where § = 2, fis the dimensionless maximum displacement. The maximum shearing stress
occurs along the rectangular x = +£a/2, y = +b/2 and is
nGh*
T, = o, (53)
ab

where G = £:2(1 4 v} is the shear modulus of the PCB material. In a special case of a square
bourd («u = b) we have:

n*E [(hY, 2—v, IOy
6, =0, = 2‘(1‘_—‘)‘) ((7) g(|+ Ts) Ty =T G(;) . (34)

In the case of un clongated board (b — o) the shearing stress is zero, and the maximum
normal stress, calculated on the basis of eqn (20), is

_ nE [(hY ¢

Note that the first formula in (52), when b — co, yiclds:

nE (hY, 2-v?
rom B (e (14 255%0). (56)

Hence. the results obtained on the basis of the formulas (55) and (56) are quite close.
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Equations (7) and (8) result in the following normal stresses in the center of a clamped
board:

g o WERvEHS ) 1=y 6 3 (@) 8ah
T 1=t 33 va 46" +l_tv: +‘b: (@"+b%)°

N 16a-bh- . 4a°h*
(4a*+b°)° 7 (a* +4b)’
_n2£h2a2+vb2,{l+1—v2 a . 50 2 v<l+‘h~3>+ 8a*h*
- d ] —v? Yar (a* +h°)

RS M e
+ 4a°b* + 16a°b° } (57)
@Ba*+ b5 (@ +3ap%) |}

o,

The maximum shearing stress in a clamped board of finite aspect ratio occurs along the
perimeter of a rectangle x = +a/4, y = +b/4:

n*Gh? l+v  a%h’
’-‘-v——arc[‘*—z"mfl G

In the case of a square clamped board (a = b)

. - _mE(hY, | 3(18—13v),
==\ U T e

(59)
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r,‘,=n'(i(!)§(l+ TYC)
' a 8
The maximum normal stress in an elongated clamped board is
E (WY
o x16 ", (j) Z(1+0.1937), (60)
-V [4

NUMERICAL EXAMPLE

Let an ASTM/NEMA Class G-10 fiber-glass PCB simply-supported on its contour be
subjected to a constant suddenly-applied acceleration w, = 25 g applicd to the contour. Let
the weight of all the SM devices be 20% of the bouard’s weight, and let there be 4 certain
flexibility in the spot where the given SM device can be installed on the board. In addition,
let the given device be able to withstand accelerations, not exceeding, say. 100 g. Our
purpose is to determine the PCB areas where the device can be safely installed. so that its
strength and the reliable operation are not compromised. We use the following input data:
density of the PCB material p = 0.0651b in"?>=1.8 g cm~* = 17655 N m~’, Young's
modulus £ = 2.45x 10° psi = 17.2x 10* kgf cm~? = 16.9 GPa, Poisson’s ratio v = 0.3,
ultimate stress in tension ¢, = 36000 psi = 2500 kgf cm~* = 0.248 GPa, thickness
h = 0.0625 in. = 0.159 c¢m, and the in-plane dimensions are a =8 in. = 20.3 cm and
b = 12 in. = 30.5 cm (the aspect ratio is b/a = 1.5).

Using formulas (16), we find that the linear frequency of free vibrations of the board
isA = 463.5s" ', and the parameter of nonlinearityisa = 12.3 x 10°cm~?s~*. The excitation
force acting on the PCB contour, in accordance with formula (14),is ¢ = 1.621 x25g =
39715 cm s~% The maximum linear dynamic displacement, determined by (29), is
204 = 2q/4i? = 0.370 cm. The dimensionless parameter of nonlinearity. given by (31). is
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Fig. 4. The component in question cannot be placed. for safe operation, within the shaded area.

o= tx(zn,/4) = 3.905. Then we find that the factor considering the effect of the non-
linearity on the maximum deflection is n7, = 0.347, so that this deflection is Zpu, = f:Zmax =
0.128 cm. The factor accounting for the effect of the nonlinearity on the maximum elastic
{induced) acceleration, in accordance with formula (39). is . = 3 — 2. = 2.306. Then the
distribution of the total (absolute) maximum accelerations over the board’s surface,
predicted by (41). 1s

nx ny
Wy = 25g<l +3.738 cos -~ cos - )
a h

The condition w,,,, <€ 100 g results in the following equation for the rectangle restricting
the region where the device can be safely mounted (Fig. 4):

cos gl cos . 0.803.
a b

Thus, the device should be placed for safe operation outside the region x/a = y/b = +£0.203.

The maximum stresses, calculated in accordance with eqns (52) and (53), arc o, =
701 kgfem 2 = 6.97 MPa, g, = 44.9 kgf cm " * = 4.40 MPa and t,, = 21.5 kgf em " * =
2.11 MPa. These values are very small compared to the ultimate stress g, = 2500 kgf
cm ? = 2452 MPa.

The maximum acceleration in the center of the board is w,,,, = 118.45 g. Note that the
lincar approach would lead to the following maximum acceleration in the PCB center:
W = (14 0)W, = 26214, = 65.5 g, and would result in an erroncous conclusion that the
device could be safely mounted anywhere on the board.

CONCLUSION

A simple and easy-to-use analytical model has been developed for the prediction of
the maximum deflections, accelerations and stresses arising in a flexible plate (printed circuit
board) duc to a constant acceleration applied to its support contour. We showed that it is
important to account for the nonlincarity of the plate (PCB) vibrations. If the applied
acceleration and the induced deflections of the board are large, the nonlinear effects lead
to significantly higher accelerations than the linear approach. Although thisis true, generally
speaking, also for the stresses, in the executed example these stresses turned out to be quite
small. The results obtained can be used to evaluate the accelerations experienced by
electronic components and devices, surface-mounted on flexible printed circuit boards.
These results can also be of help when choosing the appropriate type, dimensions and
support conditions of the PCB, as well as the most feasible layout of the components and
devices.
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