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Abstract-We evaluate the dynamic response of a flexible rectangular thin plate to a constant
acceleration applied to its support contour. The study is carried out in application to printed circuit
boards (PCBs) used in avionic packaging and is based on a simple and easy-to-use analytical model.
clearly indicating the role of various factors affecting the mechanical behavior of the board. The
main goal of the study is to determine the maximum accelerations experienced by the bo... rd. We
showed that in the case of large deflections of a board with a nondeformable contour it is important
to account for nonlinear effects. which are due to the membrane forces and lead to substantially
higher accelerations and stresses. The developed theory can Ilc helpful in evaluating the accelerations
acting on surface-mounted components. and choosing the appropriate PCB type. dimensions and
support conditions. It can also be uscd whcn choosing thc most fcasiblc layout of the electronic
dcvices on thc board.

INTROI>lJCTION

Although cyclic dil1i:rcnti;a1 therm;al exp;ansion is uSll;ally regarded ;as the most typic;al and
the most critical type of lo;ading on electronic equipment. mech;anic;al, ;and especially
dynamic. lo;ading c;an playa crucial role in the performance ;and reli;ability of electronic
components and devices [sec, for instance. Steinberg (1l,l73. ll,llN): Suhir and Lee (1989»).
Such loading can occur during mechanical h;andling or accidental misuse of the equipment,
;as well as during its shipment (tr;ansporl;ation). In milit;ary applications, dyn;amic loading
takes place even during normal operation of the electronic equipment.

[n the ;analysis below we evalu;ate the dyn;amic response of a l1exible thin pl;ate to a
const;ant acceleration, suddenly applied to its support contour. with application to printed
circuit boards (PCBs) used in avionic pack;aging. Shock lo;ading of this type can occur. for
example. during launching or m;anoeuvering of a spacecr;aft or a guided missile.

The main go;al of our investig;ation is to determine the maximum accelerations experi­
enced by the electronic components and devices surf;ace-mounted (SM) on the bo;ard. It is
known that elevated accelerations can alfect both the mech;anic;al integrity ;and the normal
functioning of the SM components. In addition, we evalu;ate the m;aximllm stresses in the
PCB in order to est;ablish whether these stresses can be high enough to cause any serious
damage to the bo;ard structure.

In our study we consider the f;act that the PCB's support contour is typically non­
deform;able. This le;ads to reactive membrane (in-plane) stresses which arc proportional to
the deflections squared [see. for instance, Timoshenko and Woinowski-Krieger ([ 969)].
Limiting our analysis to the principal mode of vibrations. we obtain an exact solution to
the nonlinear problem in question. Clearly, such a solution can be applied with confidence
even in the case ofsignificant external accelerations and very large elastic deflections. Linear
theory, which considers bending only, always overestimates the bending stresses. as well as
the dynamic deflections (amplitudes). When these deflections are small. and the vibration
frequency can be assumed deflection independent. the linear approach conservatively and
quite accurately predicts the induced accelerations and stresses. However, when the deflec­
tions are significant. the linear approach may not be conservative. As far as the stresses are
concerned. this is due to the membrane forces which are ignored by the linear theory. In
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the case of the maximum accelerations. this is due to the fact that the nonlinear frequency
can be substantially larger than the frequency of linear vibrations. and the induced accel­
erations are approximately proportional to the frequency of vibrations squared.

[n this investigation. we treat a PCB as a thin and flexible rectangular plate. Note that
various linear and nonlinear problems of the dynamics of plate structures were analyzed
and discussed in great detail in numerous monographs. manuals and reference books.
Examples are: Timoshenko and Young (1955). Den-Hartog (1956) and Harris and Crede
(1976). Approximate analyses of nonlinear oscillators with stiff cubic characteristics (so­
called Duffing oscillators) can be found. for instance. in the books by Kauderer (1958) and
Hayashi (1964). [t should be pointed out. however. that the emphasis is made in these
books and manuals on periodic excitations and weak nonlinearities. Solutions to static
problems of nonlinear bending of plates were presented by Bubnov (1912). Prescott (1924),
Levy (19.l2) and Timoshenko and Woinowski-Krieger (1969). Linear modal analyses and
dynamic response predictions of PCBs and SM components. subjected to continuous
vibrations. have been carried out recently by Lau and Keely (1989). Crovetto et al. (1990).
Keltie and Ozisik (1990). Kim and Gupta (1990) and Wong et al. (1990). Structural analysis
of circuit board (card) systems subjected to bending was performed by Engel (1990).

ANALYSIS

Strc.1'S .timet;11"
The memhrane stresses (T? (T~ (normal) and r~, (shearing) in a PCB arc expressed

through the stress function 4) as follows [sec. for instance. Timoshenko and Woinowski­
Kricger (1969)1:

( I )

This function must satisfy the continuity equation

(2)

where II' = II'(X. y, t) is the deflection' function. E is Young's modulus of the material. and
the operators V4 (biharmonic operator) and L are:

[n the case of a PCB with a nondeforrnable contour. the stress function </> must also satisfy
the conditions

I f"l! I f"l! (011')2 1
E ". (a~-va.:)d., ~ 2" ax dx .

I fM 2 I ihl2 (0",,)2-- «T~ - va~) dy = - - dy
E II 2 II iJy

(3)

where \' is Poisson's ratio of the PCB material. and a and h are the PCB dimensions in the
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Fig. I. Fleltible thin plate (printed circuit board) under the action of constant acceleration applied
to its support contour.
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x and y directions. respectively (Fig. I). Conditions (3) simply state that the in-plane
displacements due to the membrane stresses must be equal to the in-plane displacements
due to bending. Note that although the elastic constants of a PCB are. generally speaking.
somewhat different in the directions x and y. in this study we do not account for this
difference. i.e. assume that the PCB material is isotropic. In addition. we assume that this
material has the same properties in all its points. i.e. homogeneous.

Limiting our analysis to the first mode of vibrations. we seek the functions wand l/J in
the form:

(4)

where we(1) is the displacement of the support contour. ",I(X.Y) is the coordinate function
of the lirst mode of vibrations. :(r) is the corresponding principal coordinate. and cP I(X.Y)
is the static stress function.

The coordinate function W I of a simply-supported board with a finite aspect ratio h/a
between 1 and 2 can be presented. when the membrane stresses are sought, in the form
(Prescott. 1924):

nx nv
WI = cos -;; cos ;, . (5)

After substituting (4). with consideration of (5), into the continuity eqn (2) and the non­
dcformability conditions (3). we find that the function l/J I must satisfy the equation

and the conditions

~ r,12
( iJ2 l/J1 _ iJ2l/J1) _ n2h ~ [h/2 ( iJ2 l/J1 _ iJ2l/J1) _ n2h

E Jo iJy 2 V iJx 2 dx - 320' E Jo iJx 2 V iJy 2 dy - 32h .

These result in the following expression for the static stress function:

E {2n
2

[( v I), (1 v) 2J 0
2

nx h
2

ny }l/J I = 32 I _ v2 02 + h 2 x· + 02 + h2 y - h2 cos -;; - 02 cos b . (6)

The coordinate function for a clamped board (plate) with an aspect ratio h/o between
1 and 1.5 can be assumed in the following approximate form (Levy. 1942):
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(7)

This. together with the conditions of the nondeformability of the contour. results in the
following formula for the static stress function:

Equation ofmotion
The kinetic energy T and the strain energy V ofa PCB (plate), subjected to bending and

membrane forces, are expressed as follows [see, for instance, Timoshenko and Woinowski­
Krieger (1969)] :

V = ~DL[(.1w)2 - 2(1- v)L(w, w)] dA + ! ~L[(.1cP) 2
- 2( 1+ v)L( cP, cP )]dA, (10)

where A = ah is the PCB area, m is its mass per unit area (with consideration of the masses
of the SM components, assuming that these masses can be uniformly "spread" on the
PCB surl~lce), D = EII'/ 12(1- v2

) is the PCB's flexural rigidity (we assume that the SM
components are small and affect only the PCB mass, but not its rigidity), II is the board's
thickness, and

is the Laplace operator. The first term in (10) is due to bending, and the second term is due
to the tensile membrane stresses.

After substituting (4) into formulas (9) and (10), we obtain:

(II)

where the following notation is used:

(12)

Introducing expressions (II) for the energies in the Lagrange equation [see, for instance,
Pars (1965)] :
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we obtain the following nonlinear differential equation for the unknown principal
coordinate =(t):

(13)

Here

is the excitation force. and

M
o
1WI dA

C = -= --=---
M 1wrdA

( 14)

(15)

is the factor considering the effect of the coordinate function on the magnitude of the
excitation force. Equation (13) describes nonlinear forced vibrations of a one-degree-of­
freedom system with the linear frequency), and the parameter of nonlinearity IX [see. for
instance. Den Hartog (1956)].

With eqns (5) and (6). formulas (12) and (15) result, in the case of a simply-supported
board. in the following expressions for the linear vibration frequency A., parameter of
nonlinearity IX. and the excitation force factor c:

). = tr 2 a
2

~~~ @
a 2b- ..j;,

3tr4 D (3_v2)(a4+b4)+4va2b2
IX = -- - -'-----'--.-:-;;----

4 mh 2 a4 b4

16
c = 2 = 1.621

tr

For a square board (a = b) we have:

(16)

tr
4 3-v Eh

iX=-----
8 I-v ma4

'
(17)

In the case of a clamped board, introducing expressions (7) and (8) into formulas (12),
we obtain:

c = (1)2 = 1.778

For a square board (a = b)

(18)
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. _ 8n~ /JD _ n4 27-17v Eh
""-3' . IX- 49 1 4·a- m -V ma

( 19)

For an elongated board the exact coordinate function is as follows [see. for instance,
Timoshenko and Young (1955)]:

x x
WI = C cosh P- + cos P- •

a a
(20)

where C = 0, P= n in the case of a simply-supported board. and C = 0.1329, P= 4.73 in
the case of a clamped board. This results in the formulas

4
c = - = 1.273

1t
(21 )

for a simply-supported board. and in the formulas

11.75 Eh
IX = "-- -- c = 1.165

I-vl ma4
'

(22)

for a clamped board.

Maximum deflectioll, ('e!ocit)' ami acce!eratioll
The maxima of the deflection, velocity and acceleration can be determined even without

solving eqn (13). Indeed. with the constant external acceleration I~'c' this equation c.tn be
written as

or

If the initial displacement and velocity are zero. the constant of integration C is also zero,
and therefore

(23)

This relationship (phase diagram) is plotted in Fig. 2.

i

Fig. 2. Phase diagram for the principal coordinate.
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The displacement: reaches its maximum value :mlU at the end of the first quarter­
period of vibrations. when the induced velocity =is zero. This results in the equation:

(2~)

If the force q were applied statically. then. putting in eqn (13) == O. we obtain the following
cubic equation for the static displacement :51:

q-;,Z:,t-~:~ = O. (25)

Since the maximum induced velocity =ma. also takes place when the acceleration =is zero,
we conclude. that == =ma.. when: = :,t. so that

(26)

The cubic eqns (24) and (25) have the following solutions:

where

~o _ ~q
-,nOlA - A2

is lhe maximum linear dynamic displacement.

II q z~..
:'t=F=T

is the maximum linear static displacement. and the factors

(
~ll )Z_ ex -maA

1/ - -.:; ---;- ,
- !.

(27)

(2R)

(29)

(30)

(31 )

(32)

consider the effect of the nonlinearity on the maximum dynamic and static displacements.
respectively. The dynamic factor

(33)

changes from Kd = 2 in a linear system (1/ = 0) to K.J = I in a strongly nonlinear system
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Fig. 3. /';u':I\'rs rellel.:ling the clrcct of rwnhnearity on the dynamic ('t..J and stallc (',.,) displaecmcnts,
on thc induccd acceleration ('I,) and thc dynamic factor (h,,), as functions of thc dimcnsionlcss

paramctcr II of nonlincarity

(Jl-+ ,'l~). Thl.: factors tl:. tl" and 1\" arl.: plottl.:d in rig. 3. This figurl.: indicatl.:s that dynamic
nonlinl.:ar clrl.:cts arl.: substantially gn:atl.:r than thl.: static clrl.:cts.

Thc initial clastic (induccd) accclcrationc.m be e'lsily obtaincd from cqn (13) by putting
thc displaccmcnt : cqual to zero:

(34)

Thus, thc factor c. given by formula (15), is. in cllcct. thc ratio of the maximum initial
elastic acceleration to thc acccll.:ration of the contour. The distribution of the total (absolute)
acceleration over the surfacc of thc PCB can be obtained on thc basis of the first formula
in (4) and is as follows:

(35)

It is evidcnt from this formula th'ltthe initial'lccl.:krution Ii'" is the maximum on the contour
(where II', = 0)••Ind is the minimum in the center of the bmlrd (where II', = 1):

(36)

In the case of a simply-supported board of finite aspl.:ct ratio. using (5). we havc:

(
16 ITX ITr )

li\(x.y) = - ", C05-- cos ',' - I li\.
IT' 11 )

This formula indicates that the initial accelerations arc negative within the rectangular
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The rl1lnlmum acceleration in the center of the board. in accordance with (36). is
li....mm = - 0.6211(. In the case of a clamped board. whose coordinate function is expressed
by (7). we obtain that the initial negative accelerations occur inside the rectangular
x/a = y b = 0.3098 and that the minimum acceleration is li·,.mm = -0.778li·c' Thus. negative
initial accelerations occupy rather large PCB areas and their absolute maxima are quite
comparable with the magnitude of the external acceleration. This is important to have in
mind. particularly when evaluating the strength of interconnections of the devices mounted
in the inner portion of the PCB on its "front" side. i.e. on the side of the direction of
motion. At the first moments of loading such interconnections may experience rather high
tensile stresses. These have a potential to be more dangerous than even larger compressive
stresses that will occur later. at the end of the first quarter-period of vibrations.

In elongated boards the region of negative initial accelerations is - 0.212a ~

x ~ O.~ I~a for a simply-supported board. and - 0.169(1 ~ x ~ 0.169a for a clamped board.
The accelerations in the center of thc board are li....mm = -0.2731i'·c and li\.mlR = -0.297Ii\.
respectively.

As one can see from cqns (13) and (25). the induced acceleration of the board becomes
zero when == ='1' At this moment in time all the points of the board have the same
acceleration as the support contour.

At the end of the first quarter-period ofvibrations. when the board reaches its maximum
ddkction == =",.". its elastic acceleration. as follows from (13). is

or. wnsidering (24).

From (29) and (37) we find that thc induced linear acceleration is

.;:0 __
- max - lJ,

(37)

(38)

i.e. equal in magnitude and opposite in sign to the initial (linear or nonlinear) acceleration.
expressed by formula (34). The formulas (37) and (38) indicate that the factor

(39)

accounts for the effect of the nonlinearity on the maximum induced acceleration. This factor
is plotted in Fig. 3. In strongly nonlinear systems (Jt -0 (0) the factor 'I:. reflecting the effect
of the nonlinearity on the maximum deflection. is very small. and therefore in such an
extreme case the nonlinear induced acceleration can exceed the linear acceleration by a
factor of 3.

Consider a new dimensionless parameter 15. which will be used hereafter. so that

(40)

Let us show that ,,: = IV Indeed. in this case eqn (39) yields: 'I: = (3 -15 2)/2. and formula
(40) results in the following equation for the factor 'I:: I - 'I: - J.l'll = O. Since 'I: = i. 2=m••/2q.
this cubic equation yields: 2'1 - i. ~=ma, - !Gl=~... = O. i.e. leads to the previously-obtained eqn
(24). The calculated values of e5 are shown in Fig. 3 along with the values of J.l. When J.l
changes from zero to infinity. the e5 value changes from I to Ji
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The absolute (total) accelerations of the board at the moment of time equal to the
quarter-period of vibrations arc

(41)

(t is evident from this formula that all the points of the board have at this moment in time
the same direction of their maximum accelerations. as the support contour. At the center
of the board they are by a factor of

'II) = 1+01, (42)

larger than on the support contour. In a linear system this factor is 'III = 1+c = 2.621 for
a small aspect ratio simply-supported board. 'III = 2.273 for an elongated simply-supported
board'''11 = 2.778 for a small aspect ratio clamped board. and 'III = 2.165 for an elongated
clamped board. In strongly nonlinear systems. with the factor of the elastic acceleration 'I,
approaching 3. the factor "11 of the total acceleration at the center of the board reaches
'III = 5.863 in the case of a small aspect ratio simply-supported board. 'III = 4.S 19 in the
case of an elongated simply-supported board. 'III = 6.334 in the case of a small aspect
ratio clamped board. and 'III = 4.495 in the case of an elongated clamped board. Thus.
nonlinearity can result in a significant increase in the total acceleration of the PCB.
Obviously. at this moment in time the interconnections in the devices mounted on the
"front" side of the hoard experience compressive stresses. while the interconnections on its
"back" side arc suhjected to tension. [t should be pointed out that hecause of the structural
damping the elastic vihrations fade in the course of time. and therefore at the moments or
time sullkiently remote from the moment of loading. the PCB accelerations arc simply
equal to the acceleration li\ of the contour.

5;0/111 iOIl III lite ('lflla I ill1l o(mol iOIl

The maxima of the PCB deflection. velocity and acceleration were determined in the
previous section on the basis of more or less elementary considerations. without solving the
equation of motion (13). This solution can be written. using (23). in the form:

(43)

where

(44)

is the elliptic integral of the first kind (sec. for instance. Bateman and Erdelyi (llJ55);
Abramowitz and Stegun (1%4); Sneddon (19HO)]. k is the modulus of the elliptic function.
() = cn II is the amplitude of this function. and (1 is the frequency parameter.

[n order to express the parameters k and (1 through the parameters of the dynamic
system (13). we seek the inversion of the above integrals in the form:

I-cn u
- - -m.u <f'+-f+ (c>- ~l)Cn-~~ . (45)

Here =m... is the maximum displacement. cn II is the elliptic cosine. and <5 is a so-far unknown
parameter. Using the rules of differentiation of the elliptic functions. we obtain:
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..: _ .,. _ sn u dn u
- - -Oa- ma• [15+ I +(J-I)cn uf'

:.: = "JCT~- (c5+ 1)(1-2k~ sn~ u) cn u+(c5-I)[1 +(1-2k~)sn~ u]
- - -ma. [(c5+I)+(J-I)cnup
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(46)

(47)

where sn u is the elliptic sine, and dn II = JI-k~ sn~ u is the function of delta-amplitude.
After substituting (45) and (47) into (13). we conclude that the maximum displacement =ma\

is expressed by eqn (24). and the parameters k and CT are as follows:

where the parameter

k=
(c5-I)(3-c5) , (2"J

815 ' CT = )'.J~' (48)

(49)

is related to the dimensionless parameter of nonlinearity JI, introduced earlier, by eqn (40),
In the linear case (:x = 0). () = I, k = 0 and (1 = ;.. In a strongly-nonlinear case (rx ..... :0).

="".\ = 0, J = J3. k = !J2-- J3 = 0.259. and CT - 00. The elliptic functions. entering the
formulas (45), (46) and (47). can be computed using recommendations and formulas
contained in Lance (1960).

AII the relationships of the previous section can be determined. of course. on the
basis of the solutions of this section. Let us show. for instance. how relationship (37)
can be obtained from (45) and (47). From (45) we lind that cn II = I when = = =m.. '

Since in this case sn /I = O. eqn (47) yields: : = ~6CT~=1II;'" Then from (4K) and (49) we have:
()(1! = - (21=m... )()' !=ma. - 3q). This leads to (37).

The formula for the amplitude 0 of the elliptic function can be obtained from (45).
assuming en II = cos O. This results in the equation

ji
---_.

I =nHUo= arccot'lIl J ( =-- - I) .

The amplitude 0 reaches its maximum value Oma. = nl2 when the displacement =reaches
=m.. ' In this case the integral (44) becomes a complete elliptic integral of the first kind:

(
n ) ln~ dO

K(k) = F .,' k = -=--==-==--:= ,
- 0 JI-k 2 sin 2 0

Since the time required for the angle 0 to change form zero to n/2 is equal to the quarter
of the period of vibrations. we condude. on the basis of solution (43), that this period is
4K(k)/CT. Therefore, the vibration frequency is

(50)

In the linear case. k = 0, K(O) = rc/2, c5 = I and (I) = CT = L
As follows from the obtained results. the effect of the nonlinearity on the maximum

induced (relative) displacement. velocity. acceleration and frequency can be characterized
by the following factors:
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Stress
The stresses arising in the PCB can be computed on the basis of the following formulas

for the rectangular plates [see. for instance, Timoshenko and Woinowski-Krieger (1969)]:

(51 )

where the tirst terms are the membrane stresses, expressed by the formulas (I), and the
second terms arc due to bending.

With eqns (5) and (6) for the coordinate function and the static stress function, we
tind. using (51 l. that the maximum normal stresses in a simply-supported board of finite
aspect ratio occur in its center (x = y = 0) and arc as follows:

(52)

whne ~ = =111.,,/1t is the dimensionless maximum displal:ement. The maximum shearing stress
ol:l:urs along the rel:tangular x = ±a/2, y = ±h/2 and is

(53)

where (j = E; 2( I + I') is the shear modulus of the PCB material. In a special case of a square
board (a = h) we have:

7T.~E (h)~ ( 2-V)
U, = U, = 2(T- v) ; , 1+ 4' . (54)

In the case of an elongated board (h ..... (0) the shearing stress is zero, and the maximum
normal stress. calculated on the basis of eqn (20). is

(55)

Note that the lirst formula in (52). when h ..... co, yields:

(56)

Hence. the results obtained on the basis of the formulas (55) and (56) are quite close.
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Equations (7) and (8) result in the following normal stresses in the center of a clamped
board:

The maximum shearing stress in a clamped board of finite aspect ratio occurs along the
perimeter of a rectangle x = ±a/4. y = ±b/4 :

In the case of a square clamped board (a = b)

(1, = (1 I' =~,2_~ (J~)2 ,[ I + ~~~ =~-~~ 'JI
I-v CI 160

, (")2 ( I + v )
r '" = Tt-C ;~ , I +8 '

The maximum normal stress in an elongated clamped board is

E (")2(1, == 16
1
---; - (I +O.193().
- v- CI

(58)

(59)

(60)

NUMERICAL EXAMPLE

Let an ASTM/NEMA Class G-IO fiber-glass PCB simply-supported on its l:ontour be
subjected to a constant suddenly-applied acceleration li\ = 25 g applied to the contour. Let
the weight of all the SM devices be 20% of the board's weight. and let there be a certain
flexibility in the spot where the given SM dcvice can be installed on thc board. In addition.
let the given device be able to withstand accelcmtions. not eXl:eeding. S~ty. 100 g. Our
purpose is to determine the PCB areas where the device can be safely installed. so that its
strength and the reliable operation are not compromised. We use the following input data:
density of the PCB material p = 0.065 Ib in- J = 1.8 g em- 3= 17655 N m- 3. Young's
modulus E = 2.45 X106psi = 17.2 x 10~ kgf em -2 = 16.9 OPa. Poisson's ratio v = 0.3.
ultimate stress in tension (1u = 36000 psi == 2500 kgf cm - 2 = 0.248 OPa. thickness
h = 0.0625 in. = 0.159 em. and the in-plane dimensions are a = 8 in. = 20.3 cm and
b = 12 in. = 30.5 em (the aspect ratio is b/a = 1.5).

Using formulas (16), we find that the linear frequency of free vibrations of the board
is). = 463.5 S-I, and the parameter of nonlinearity is IX = 12.3 X 106 cm - 2 s- 2. The excitation
force acting on the PCB contour, in accordance with formula (14), is q = 1.621 x 25 g =
39715 em S-2. The maximum linear dynamic displacement. determined by (29), is
;:~.. = 2q/;' 2 =0.370 em. The dimensionless parameter of nonlinearity. given by (31). is
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y

r I
6.2cm l-- . --lJ..

20.3cm ._.-wJ1_._-

L I 4rm

l. 30.5cm .1

Fig. 4. The component in question cannot be placed. for safe operation. within the shaded area.

JI = !:l(::~a'/;.)! = 3.905. Then we find that the factor considering the effect of the non­
linearity on the maximum detlection is '1= = 0.347. so that this detlection is ::ma, = '1=::~a, =
0.128 cm. The t~tctor accounting for the clrect of the nonlinearity on the maximum elastic
(induced) acceleration. in accordance with formula (39). is '1: = 3 - 2'1= = 2.306. Then the
distribution of the total (absolute) maximum accelerations over the board's surface.
predicted by (41 ). is

(
nx nr)

Ii"'"", = 25g I +3.738 cos a cos i, .

The wndition Ii"'"", ~ 100 g results in the following equation for the rectangle restricting
the region where the device can be safely mounted (Fig. 4) :

nx 1tr
cos - cos h' - = 0.803.

a

Thus. the device should be placed for safe operation outside the region x/a = y/h = ±0.203.
The maximum stresses. calculated in accordance with eqns (52) and (53), arc (1, =

71.1 kgfem!=6.97 MPa. (1,.=44.9 kgfcm!=4.40 MPa and r". = 21.5 kgfcm !=
2.11 M POl. These values are very small compared to the ultimate stress (1u = 2500 kgf
cm ! = 245.2 M Pol.

The maximum acceleration in the center of the board is li"'"a, = 118.45 g. Note that the
linear approach would lead to the following maximum acceleration in the PCB center:
Il'm", = (I + c)wc = 2.621Ii·'c = 65.5 g. and would result in an erroneous conclusion that the
device could be safely mounted anywhere on the board.

CONCLUSION

A simple and easy-to-use analytical model has been developed for the prediction of
the maximum deflections. accelerations and stresses arising in a tlexible plate (printed circuit
board) due to a constant acceleration applied Lo its support contour. We showed that it is
important to account for the nonlinearity of the plate (PCB) vibrations. If the applied
acceleration and the induced detlections of the board arc large, the nonlinear effects lead
to significantly higher accelerations than the linear approach. Although this is true, generally
speaking. '1lso for the stresses. in the executed example these stresses turned out to be quite
small. The results o':>tained can be used to evaluate the accelerations experienced by
electronic components and devices, surface-mounted on Aexible printed circuit boards.
These results can also be of help when choosing the appropriate type, dimensions and
support conditions of the PCB. as well as the most feasible layout of the components and
devices.
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